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Diameter of basalt columns derived from fracture mechanics bifurcation analysis
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The diameter of columnar joints forming in cooling basalt and drying starch increases with decreasing
growth rate. This observation can be reproduced with a linear-elastic three-dimensional fracture mechanics
bifurcation analysis, which has been done for a periodic array of hexagonal columnar joints by considering a
bifurcation mode compatible with observations on drying starch. In order to be applicable to basalt columns,
the analysis has been carried out with simplified stationary temperature fields. The critical diameter differs
from the one derived with a two-dimensional model by a mere factor of 1/2. By taking into account the latent
heat released at the solidification front, the results agree fairly well with observed column diameters.
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I. INTRODUCTION

The well-known conspicuous basalt columns with prefer-
ably hexagonal cross sections give rise to wonder and an
urge for explanation. The preference for hexagons has been
quantified in [1,2]. Basalt columns originate from crack
propagation caused by thermal contraction of solidified lava.

A similar columnar type of disintegration is observed in
other contracting solids, such as sandstone [3-5] and drying
starch slurry, for example. The latter has repeatedly been
used as a model substance for investigating the phenomenon
[6-13]. The shrinkage cracks starting from the surface in a
random distribution turn into a more regular polygonal con-
figuration, with hexagons prevailing, while propagating into
the depth, as has been observed in [13] with computer to-
mography; see the schematic drawing in Fig. 1. This tech-
nique has also revealed that the column diameter may
abruptly increase locally by way of two or three columns
merging into one. This is brought about by a rearrangement
of the crack configuration in the course of propagation, as
shown later in Fig. 4(a), for example, where a knot of the
network, together with the three sections of the crack front it
is made of, is seen to stop, which finally leads to a coarser
mesh, or larger columns. Such coarsening of developing
crack patterns is also observed in basalt before stationary
crack propagation forms columns with constant diameter
[14-18].

The maturation process has been simulated with two-
dimensional (2D) models (in planes normal to the growth
direction) by variation of a Voronoi tessellation [1], by mini-
mizing an energy functional [2,19], or with a three-
dimensional (3D) spring network model [20]. The tendency
toward hexagon formation is reproduced with the 2D mod-
els. The merging of two or three columns into one is also
seen in Fig. 3 of [19]. Coarsening phenomena in thermal
shock crack patterns are the subject of several theoretical
papers [21-26].

* Author to whom correspondence should be addressed;
hans-achim.bahr @tu-dresden.de

1539-3755/2009/79(5)/056103(9)

056103-1

PACS number(s): 46.50.+a, 47.54.—r1,91.55.—y

The observed coarsening process is connected with a re-
duction in randomness. This phenomenon has been modeled
in [27] and, with a 3D stress analysis by means of finite-
element method (FEM), in [28].

Long columns with virtually no variation in cross section
suggest the idea of a steady-state process for their formation.
Such process is expected at depths where cooling from the
surface becomes negligible compared to convective heat
transfer. The convective flow could be driven through coher-
ent porosity in the basalt [16,29] or through the gaps between
the columns [1,18,30]. Steady-state temperature fields were
measured in boreholes during solidification of the Kilauea
Iki lava lake in Hawaii for 12 years [29]. In the model ex-
periment with drying starch a similar regime was established
by controlling the evaporation rate of the liquid [11].

In view of the fact that the phenomenon covers a size
range from millimeters to meters at least, the question arises
as to which parameters determine the diameter. In [1,16] the
diameter is assumed to be inversely proportional to the
steady-state propagation velocity of the cracks. This is ap-
proximately realized with starch columns [11] and was cal-
culated in [31] with a linear-elastic steady-state 2D model [in
planes x=const in Figs. 2 and 8(a)]. Information from mea-

FIG. 1. Schematic illustration of coarsening and reduction in
randomness in a crack network during propagation into depth, lead-
ing to hexagonal columns.
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FIG. 2. Element of a periodic array of hexagonal columns with
thermomechanical boundary conditions. Only a twelfth part of a
column has to be considered which is a three-sided prism with faces
A and C and the third side including the shaded crack face up to the
crack contour and the ligament face B below it. The crack contour
is moving with the velocity v. Symmetry implies T,;n;=0, u;n;=0,
and vanishing of the in-plane component of the traction vector, #;
=oyn;, at faces A, B, and C with the normal vector n; directed
outward.

sured stria heights on the columns has confirmed the above
relation, as recently published in [18]; see Sec. V. In connec-
tion with a discussion of the approach taken in [31], the idea
was favored in [27,28] “that the typical width of the columns
is set by the typical distance between cracks at the surface,
and it is not modified with the further penetration ... since in
this (3D) case all fractures form a connected crack structure,
and this generates an additional tendency to stabilize the
crack front.” In contradiction to that idea, our present 3D
fracture mechanics bifurcation analysis shows that a mini-
mum column diameter can be derived from calculations
based on the steady-state regime.

A linear-elastic thermomechanical 3D model for a peri-
odic array of hexagonal columns, with the crack network
making up the columns while propagating in a stationary
way, is proposed in Sec. II. The fracture mechanics basic
solution of the crack front is given in Sec. III. A particular
bifurcation mode ansatz with three columns merging into one
is used in Sec. IV to calculate the critical diameter of basalt
columns. In Sec. V, the results are compared with observa-
tion. It is emphasized that fairly good agreement is obtained
only if the heat released during solidification is taken into
account. Further conclusions are discussed in Sec. VI.

II. 3D THERMOMECHANICAL MODEL

As schematically shown in Fig. 1 coarsening of an initial
crack network precedes the stationary growth of columns.
With the cracks advancing, the conductive heat flow to the
external surface decreases, and one can assume that convec-
tive cooling finally prevails [18]. Crack propagation becomes
slower until supposedly a regime of (nearly) steady-state,
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self-driven column formation with constant velocity is
reached. This serves as a justification to do the analysis with
constant velocity.

As has been observed with computer tomography [13],
the spacing becomes more uniform while the cracks are
propagating, which is equivalent to a mutual “repulsion” of
neighboring cracks. This is intuitively understandable since
the elastic energy available for release during propagation is
higher for wider spacing. The tendency toward uniform spac-
ing implies a tendency toward an array of hexagonal col-
umns with equal diameters, which can be approached sur-
prisingly well in reality.

We extend the 2D model used in [31] to a 3D model and
assume an idealized periodic array of hexagonal columns
(Fig. 2) generated by a crack front moving with the constant
velocity v in z direction. There are reasons to restrict the
analysis to hexagonal columns: Hexagonal columns are the
most abundant ones in the natural column arrays with non-
perfect symmetry [1,2]. This justifies the tentative assump-
tion that configurations other than the periodic network of
hexagonal meshes are intrinsically unstable in propagation.
The validity of this assumption cannot be verified for all
configurations, of course. As one example, the periodic net-
work of quadratic meshes has been chosen to prove its insta-
bility in propagation, which has been done with 3D stress
analysis by means of FEM [28].

In Fig. 2 we assume that the columns extend from
z=—=. The origin of the coordinate system is chosen at some
distance from the crack contour. 2p is called column diam-
eter, and p=2p/y3 is column side width. The inhomoge-
neous temperature field T(x,y,z) is governed by the heat
diffusion with constant thermal diffusivity D, which reads

V2T + %T,Z=O (1)

in the frame of reference moving with the velocity v of the
crack contour. ( ),; means the derivative with respect to x, y,
or z.

The stresses o;; and displacements u; for linear-elastic iso-
tropic material are described through the equilibrium condi-
tion (without gravity) and the constitutive law:

0ijpi = 0, 0ij=0j»

O-i.:_
J 1-2v

E v
10 E(uiaj +uj) + Eéij“k’k : (2)

a(T - To) 5

Here Einstein’s sum rule is applied. The temperature T, re-
fers to the reference state where no thermal stress is present.
T, is realized far ahead of the columns for z— . E, v, and «
are Young’s modulus, Poisson’s ratio, and the thermal-
expansion coefficient of the material. Equations (1) and (2)
are solved with the thermomechanical boundary conditions
as shown in Fig. 2 by using FEM [32]. Here convective
cooling within the cracks is assumed to be the driving force
of crack propagation [1,30]. Crack-aided convective cooling
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is discussed in more detail in [18] and will be described as in
[31] by cooling the crack faces with an effective heat transfer
coefficient £,

AT, nj==hT-T)), 3)

)

in our simplified temperature model. Here N means the heat
conductivity of basalt, and 7, i is the derivative in outward
normal direction n; of the crack face. T is maintained in the
interior of the cracks and can be regarded as coolant tem-
perature and is realized in the column for z— - (see Fig.
2).

III. FRACTURE MECHANICS BASIC SOLUTION

Steady-state crack propagation implies that everywhere
on the moving crack front the energy released per crack face
increment, G, equals the energy consumed per crack face
increment, G,

G=G,. 4)
Where
G=G. (5)

on the crack front, propagation stops. (As crack propagation
is irreversible for reasons lying beyond fracture mechanics,
cracks cannot become shorter.) The symmetry of the array of
hexagonal columns implies that there is no other than mode
I crack opening; hence Kj is the only stress intensity factor
contributing to G [33]:

G=—2K. 6)

Kj has been calculated by the crack opening displacement
component u;(r) perpendicular to the crack face [33]:

E ) 2
K= m}f; \/ T“I(r)- (7)

Here r means the distance from the crack contour within the
crack face shown schematically in Fig. 2.

The crack contour is found from G=const [not yet fixed
to G, as in Eq. (4)] calculated by means of FEM and iteration
with the gradient method described in [34]. The calculated
crack contours Aa(x)=a(x)—a(p/2) are given in Fig. 3(b).
The crack length a(x) is not defined here but the difference
is. It is seen that the front is most advanced at the nodes of
the hexagonal network because these are cooled via three
cracks instead of one.

The energy release rates calculated for this 3D problem,

G=E(aAT)2p (% h_p)

D’ \ ®

I1-v
with AT=T,—T,, depend on two dimensionless parameters
(see below). The solution of Eq. (8) is called basic solution
and can be seen in Fig. 3(a). The limit g— 1 for vp/D—0 of
homogeneous stress follows analytically from the difference
between the remote strain energy densities far behind and far
ahead of the crack front. The dependence on v has been
confirmed for v #0 by FEM calculations.
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FIG. 3. Basic solution represented by (a) energy release rate G
and (b) slightly curved crack contours Aa(x) calculated iteratively
from G=const.

Our model contains four characteristic lengths, the crack
spacing 2p, the diffusion length D/v in Eq. (1), the cooling
length \/% in cooling boundary equation (3), and from the
crack propagation condition G=G., the length /,, which is the
ratio of crack face energy and stored elastic energy:

(1 - V)GC

E( AT)2 for 3D case
a

o= 9
0 (1-v)G, for 2D ©
—————— for case.
(1 + v)E(aAT)?
Here, [, for the 2D case considered in [31] has been in-
cluded. In our model, /, and N/ h are loading parameters from
which 2p and D/v have to be calculated by means of the two
equations G=G, and the bifurcation criterion discussed be-
low.

IV. 3D BIFURCATION ANALYSIS AND CRITICAL
DIAMETER OF BASALT COLUMNS

Experiments with drying starch as shown in Fig. 4(a) (see
also movies in [13]) indicate that three columns eventually
merge into a larger one. Such merger can be represented by a
periodic model as shown in Fig. 4(b). In the following it is
shown how to find those critical combinations of the charac-
teristic lengths which make larger columns in this way.

Such phenomenon is equivalent to a mathematical bifur-
cation, which consists of the coexistence of another solution
besides the basic solution. Hence, the problem of determina-
tion of the column diameter reduces to finding the bifurca-
tion point (critical combinations of the characteristic lengths)
which separates the combinations with only one solution
(“basic solution”) from those with two solutions (“basic so-
lution” and “bifurcation solution”).

In order to find the bifurcation point, one does not need to
know the postcritical behavior as such but only its increment
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FIG. 4. (a) Sequence of slices through a tomogram of columnar
joints growing into the depth of drying corn starch slurry [35]. Note
the local phenomenon of three columns merging into one. (b) Ide-
alized interpretation of the local phenomenon in (a): hexagon
(shaded) formed by postcritical propagation after a bifurcation-type
instability of the hexagonal crack network. (c) Crack contour incre-
ment da(s) of the bifurcation mode solution: no propagation in a
finite vicinity of point O on the crack front. Symmetry and period-
icity of the configuration allow the calculations to be restricted to
the shaded area, redrawn in (d).

at the instant of bifurcation. A suitably chosen ansatz for
such an increment, da(s) in z direction, depending on posi-
tion s, is seen in Fig. 4(c). The coordinate s in Fig. 4 runs
between four edges (hence it only partially coincides with
the coordinate x in Fig. 2). Since da(s) is used to represent
the stop of propagation of the crack network at point O in
Fig. 4(c), it is set to zero there, and tentatively so within an
adjacent region. The ansatz for the contour as well as the size
of the zero region has to be varied until a solution is found
by iteration. According to Eq. (4), the solution is found if the
energy release rate increment dG of the crack length incre-
ment vanishes everywhere except for the region where da(s)
is supposed to be zero and dG =0 results from Eq. (5) for
stop of crack propagation. Note that the method used to de-
termine the bifurcation point in 3D case, as described in
detail in Appendix B, is an extension of the method used to
derive a 2D bifurcation in Appendix A.

Calculations were done by means of FEM with a gradient
method as described in [34], with the results seen in Fig. 5.
As technicality applied for better convergence of the itera-
tion, da(s) has been kept zero where it was tentatively as-
sumed to be so. As seen in Fig. 5(a), this useful restriction in
the numerical calculation is not a restriction in reality for the
arbitrarily chosen values vp/D=0.87 and 1.08 since dG has
turned out to be below zero there, which precludes crack
propagation anyway. For another arbitrarily chosen value,
vp/D=1.19, the above-mentioned technical restriction is a
real one as it pushes dG above zero near point 0 (s=0) in
contradiction to Eq. (5). So the related curve does not repre-
sent a solution but it can be used to find the bifurcation point
by quadratic interpolation: vp/D=1.15. Hence, the basic so-
lution is unstable with respect to bifurcation for vp/D
<1.15. For the same reason, calculations should converge
toward the basic solution for vp/D>1.15.
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FIG. 5. (a) Energy release rate increment dG(s) and (b) bifur-
cation mode increment da(s) related to vdt versus position s/p on
the crack front for »=0.21. There is a jump in the crack contour
increment at the edge at s/p=1 or point 1 in Fig. 4(c). Note that the
curves in (b) represent velocities. (For the basic solution the veloc-
ity is constant for all s.) The critical value for bifurcation is ob-
tained from the condition dG(0)=0 corresponding to Eq. (5) by
interpolation as vp/D=1.15.

A few explanatory remarks are adequate here: the incre-
mental extension of the plane crack faces by da(s) is also
plane here. This does not pose a restriction, as explained in
Appendix D. At point 1, one of the three faces of the crack
increment is shorter, as seen in Fig. 5(b). Technical details of
the 3D bifurcation analysis can be found in Appendix B. In
order to be sure that the bifurcation found here really can
lead to the merger of columns, the first incremental step of
the subsequent development of the bifurcation solution is
considered in Appendix D. There it is shown that the viola-
tion of the symmetry of the lattice of hexagons by the pres-
ence of the bifurcation solution da(s) gives rise to a dKj
# 0 with the right sign to curve the crack faces in such a way
that the change is toward the formation of a column with a
three times larger cross section; see arrows in Fig. 4(b).

The result of the bifurcation analysis can be summarized
in this way: for any velocity of steady-state column forma-
tion there is a smallest possible column diameter in the sense
that for periodic arrays of hexagonal columns any smaller
diameter would give rise to a bifurcation-type instability of
the process, with three columns merging into a larger one as
indicated in Fig. 4. This differs from the expectations in [27]
quoted above.

Note that, according to the results in Fig. 5(b), the veloc-
ity of the front at the bifurcation point, da(s)/dt, which is
constant and equal to v for the basic solution, depends on
position s for the bifurcation solution. Hence, the transition
from the basic solution to the bifurcation solution at vp/D
=1.15 involves a jump discontinuity of the velocity.

The critical value vp/D in Fig. 6(a) does not depend on
the effective cooling parameter A/ hp, as expected from scal-
ing arguments explained in Appendix C. 3D and 2D results
differ only by a factor smaller than 2. From this follows that
the effect of the connectivity in the 3D crack network dis-
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FIG. 6. Stability limits involved in the formation of basalt col-
umns: no bifurcation in the range above the respective curve. (a)
critical values for vp/D; (b) bifurcation map representing the com-
plete stability limits of the model for v and p for given loading
parameters h/\ and [, [see Eq. (9)].

cussed in [27] is not important. (Note that the 2D bifurcation
criterion used in [31] has to be replaced by the one derived in
Appendix A; hence the results differ slightly from those in
[311)

With the condition dG(0)=0 the bifurcation solution is
selected from the family of curves in Fig. 5 by interpolation.
The propagation condition G=G, serves as another restric-
tion in parameter space so that both the critical velocities v
and half diameters p of the basalt columns are determined
[see Fig. 6(b)], with the length [; as defined in Eq. (9). The
power of 2/3 in Fig. 6(b) has been found in [31] by means of
scaling arguments.

We can assume that uniform columns form close to the
stability limit in Fig. 6. As discussed in Sec. I in connection
with Fig. 1 and in the motivation of the thermomechanical
model, coarsening of an initial crack network precedes the
stationary growth of columns. In a periodic model of hex-
agonal columns the coarsening phenomenon could be calcu-
lated, in principle, as a nonstationary process involving a
sequence of bifurcations, beginning with small column diam-
eters and ending near the critical value in Fig. 6. According
to this scenario, the final column diameter should be realized
close to the stabilitx limit in Fig. 6, with an uncertainty
within a factor of 3, and a ratio of 3 for the area in Fig.
4(b).

V. COMPARISON WITH EXPERIMENTS
AND IMPROVED MODELS

The dependences shown in Fig. 6 allow the effective heat
transfer coefficient 4 to be eliminated with the result that
vp/D is essentially independent of vly/D, as shown by the
nearly constant curves in Fig. 7. The experimental values in
Fig. 7 for 0.1 <vp/D <0.27 are derived from measurements
at the solid basalt crust on the Kilauea Iki lava lake on Ha-
waii (Table I, [11]). There a steady-state temperature field
propagating in z direction with v=6.7 X 10~® m/s has been
measured in boreholes during the course of 12 years. It
agrees very well with the model of Hardee [29],

1 —exp(—vz/D)

T(z) =T, + AT .
@=1 1 —exp(—vzo/D)

(10)

This function fulfills Eq. (1) and the boundary conditions
T,=100 °C at the specially chosen position z=0 (onset of
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FIG. 7. Stability limits involved in the formation of basalt col-
umns, with and without taking into account the latent heat g re-
leased in solidification: no bifurcation in the parameter range above
the respective curve. Temperature fields after Egs. (10) and (12) are
used for 2D (10) and 2D (12). The curves labeled 2D and 3D refer
to cooling through the cracks. Considering that 3D results could be
expected to be lower than the 2D results below left, there is rather
good agreement between theory and Hawaii data.

fast convective cooling due to water steam in porous basalt)
and T;=980 °C at z=z, for the solidification temperature of
basalt. The distance z follows from the heat flow due to the
released latent heat ¢ (Table I) at the solidification front

v D AT
T,lezzO_cD, 2= Uln<1+ p ) (11)
with the heat capacity c. In the limit case ¢g— 0 the length
zo— % and from Eq. (10) follows

TABLE I. Material parameters of basalt and measured data from
Hawaii. (Some parameters slightly deviate from those applied in

[18].)

Solidification point 7} 980 °C [16]
Lower temperature 7T 100 °C
AT=T0—T1 880 OC

1046 J/kg K [29]
1.57 J/m s K [29]

Specific heat ¢
Thermal conductivity \
Thermal diffusivity D 5x1077 m?/s [29]
Latent heat g 4.18 X 10° J/kg [29]
q/cAT 0.45
Young’s modulus E at 20 °C 57%10° Pa[16]
Poisson’s ratio v at 20 °C 0.21 [16]
7Xx10°° K- [16]
2.25 MPa Vm [16]
84.9 N/m
(2.57-3.10) X107 m
6.7%107% m/s [29]
1.5-4 m [1,11,14,30]

Thermal-expansion coefficient a at 500 °C
Fracture toughness Kj. at 725 °C

Critical energy release rate G.=K;.(1-1?)/E
lp [Eq. 9)]

Velocity v

Crack distance 2p

Diffusion length D/v 7.46 m
vp/D 0.1-0.27
vly/D (3.43-4.16) X 107°
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(a)  #=-o0 (b)

solidification front:
T=T,; T,n=v,q/cD ; o,n, =0

FIG. 8. (a) 2D model with solidification front and thermome-
chanical boundary conditions for a periodic array of straight cracks
of equal length with cooling at the crack face and symmetry condi-
tions at faces G and H as in Fig. 2. The solidification contour has
been calculated iteratively. (b) Scheme of alternating bifurcation
mode in 2D approach.

T(z) =T, + AT[1 —exp(- vz/D)]. (12)

This temperature field has been used for the 2D bifurcation
analyses in Fig. 7. For vly/D <1, the result does not much
differ from that obtained for the case of convective cooling
through the cracks. Obviously the two calculated curves dif-
fer much from the experimental Hawaii data, 0.1<<vp/D
<0.27 in Fig. 7, and from the values 0.2<vp/D<<0.4 re-
cently derived in [18] from measured stria heights on various
basalt columns.

This discrepancy has been removed by taking into ac-
count the latent heat released at the solidification front,
which is free of tractions (0',37~n‘j=0). This has been done
with two improved temperature field models. One is based
on convective cooling in porous basalt [Eq. (10)]; the other
one is an extension of the model in [31] for ¢ >0, where the
heat is supposed to be transferred at the crack faces (Fig. 8).
In the model of Fig. 8 the contour of the solidification front
with the outward normal vector n; has been determined it-
eratively under the boundary condition

_ qun

T, n: = ,
J cD

(13)

where v, is the normal component of the velocity vector;
compare Eq. (11).

From the result that 2D bifurcation analyses differ from
3D ones only by a factor of 2 or less, as seen in Fig. 7, it can
be concluded that 2D calculations are sufficient here for the
interpretation of experimental data. For both models the me-
chanical boundary and symmetry conditions as in Fig. 8 are
used. This will be discussed in detail in [36] along with
problems due to the limits of the linear-elastic approach and
to viscoelastic effects [16,37].

The displacement fields near the crack tip and the energy
release rates have been calculated with Egs. (7) and (6) by
means of FEM for the two models. The lower theoretical
curves 2D (10) and 2D for ¢>0 in Fig. 7 follow from G
=G, and 2D bifurcation criterion (A2) in Appendix A. The
similarity of the two results is due to the nearly same tem-
perature gradients near the solidification front and crack tips,
corresponding to Egs. (11) and (13), which determine the
stress field near the crack tips and the energy release rate G.
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The agreement between the Hawaii data and the critical
vp/D calculated by taking into account the latent heat (Fig.
7, lower left portion) is fairly good for 2D case, considering
that several uncertainties are involved. The Hawaii data [29]
are regarded as uncertain within a factor of 2 [11], and the
uncertainty of /; due to the variation in the material data with
temperature may be even larger. The agreement would be
even better with 3D results which would be slightly lower, as
expected by comparison with the results obtained from cal-
culations neglecting the latent heat (Fig. 7, upper portion).

VI. CONCLUSIONS

It is concluded that the relation between the diameter of
basalt columns and the velocity of crack propagation can be
derived from a linear-elastic fracture mechanics bifurcation
analysis with simplified steady-state temperature models in-
volving convective heat transfer either along the cracks or
through porous basalt. Both temperature models give nearly
the same results. By neglecting the heat released during so-
lidification, we obtain a proportionality of column diameter
and D/v, where v is the propagation velocity of the crack
network forming the columns. As a remarkable detail, the
diameters derived with our computable 3D model by consid-
ering a bifurcation mode compatible with observations differ
from those derived with a 2D model by a mere factor of 1/2.

It has been demonstrated within the frame of this model
that a smallest possible column diameter for a given propa-
gation velocity can be derived from a bifurcation analysis for
stationary crack propagation. This differs from the assump-
tion in [27] that the diameters are essentially set at an early
stage.

Fairly good agreement between theory and Hawaiian data
is reached only if the heat released at the traction free solidi-
fication front is taken into account. In view of the fact that
the temperature-dependent material parameters are rather un-
certain and there is some scatter in the measured data, the
agreement between theory and experiment can be considered
satisfactory.
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APPENDIX A: 2D BIFURCATION CRITERION

We consider an idealized array of propagating cracks of
equal length. Depending on stability limits in Fig. 6, this or
another solution is realized. As shown in [23], short-range
interaction between the cracks in an array favors one particu-
lar bifurcation mode with every other crack being longer by
the increment da;, while the remaining cracks stop [alternat-
ing mode with da,=0; see Fig. 8(b)].
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In order to determine the bifurcation point as in the 3D
case the increment da, has been kept zero. With Egs. (4) and
(5) the change in the energy release rates G, and G, for equal
crack lengths a;=a, can be written in the case of da; =0 and
da,=0 for dt=0 as

JIG, JG,

dG](al,az,t) = _dal +—dt= 0,

(9611 ot
G G

dGz(al,az,t) = _2da1 + _zdt =0.
(9611 ot

(A1)

Here the first equation determines da;. With the second
equation it can be checked whether dG, =0 [Eq. (5)] is ful-
filled or not. At the bifurcation point the equality sign is
valid. Since the derivatives with respect to time ¢ are equal
for a;=a,, subtracting the equations in Eq. (Al) gives the
bifurcation criterion [21,23]

(9(11 (7(11

=0. (A2)

alzaz

It gives those parameter combinations where the basic solu-
tion is not stable and turns into the alternating mode solution
which is the stable one.

Criterion (A2) is equivalent to the numerical 3D calcula-
tion of the bifurcation point in this work. It must be men-
tioned that the bifurcation criterion applied in [31] does not
take into account the irreversible character of crack propaga-
tion. Nevertheless it has served as a fairly good approxima-
tion.

APPENDIX B: PROCEDURE OF 3D
BIFURCATION ANALYSIS

The periodicity of the problem implies the following re-
lations between the displacements on ligament faces E and F
in Fig. 4(d):

E_ F E F E
u;=u,, u;=

(B1)

The subscripts s and n denote the directions along the s
coordinate and normal to the ligament faces, respectively.

While for the highly symmetric basic solution (see Fig. 2)
the stress intensity factors Ky and Ky are zero everywhere
on the crack contour, they are incrementally nonzero on the
less symmetric contour of the bifurcation solution in Figs. 4
and 5.

For an extension of Eq. (6) we have, according to [33],

1 -2 1+v
G= — (K} + K3) + = K. (B2)

The incremental change in G due to a transition from the
basic contour to the bifurcation solution is

g2 =)

since the terms Ky dKy and KydKyyp vanish at the bifurcation
point where KII:O and KIII:O'

As a generalization of Eq. (A1), the crack front is thought
to be subdivided into small sections numbered by i which
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may be related to the FEM grid points. The incremental
change in the energy release rate at one site i depends on the
increments daj on every other site j on the crack front, as
well as on dr. This can be written with Eq. (4), as done with
Eq. (Al), as
dG; aG;
dGa.,t)=—da;+ —dt=0. B4
a0 da; ' ot (B4)
We make use of the fact that the partial derivative with re-
spect to time does not depend on the incremental change in
the contour. So we can take this derivative from the steady-
state (ss) solution
IG;
dG?S(aj, t) = a_l

aj

s 0G;
da®*+ —dt=0, (B5)
T ot

SS

where daj-s=vdt for all j, which makes

dG( t)_a_Gid &_G’
AP =05 T

J aj

vdt=0. (B6)
SS
In this way, unsteady temperature field calculations are
avoided.

Technically, the crack contour of the basic solution is put
ahead by a small distance vdt, with the temperature field kept
unchanged. This makes a small contribution to G and hence
a small violation of Eq. (B6), which has to be removed by
iterative variation in da;. This is done with the gradient
method, and the result is da(s) in Fig. 5. It has been checked
that the increment chosen here, vdr=0.04p, is sufficiently
small so that the results in Figs. 5-7 are not affected by its
size.

APPENDIX C: SCALING ARGUMENTS
WITHOUT LATENT HEAT

The critical values of vp/D in Fig. 6(a) are apparently
independent of the effective cooling parameter Ap/N. This
numerical result is compatible with scaling arguments also
applied in [38]. The line of reasoning is explained below.

For the 2D problem we define dG,/da as the partial de-
rivative for equal advance of both subsets of cracks at a fixed
time and replace dG,/da, by means of bifurcation condition
(A2). Since a,=a, at the bifurcation point, we obtain

dG, _ dG, . G, 9G, . G, _dG,

2— (C1)
da da, da, da; Jda, da,

as an equivalent form of the bifurcation condition. Now we
consider an estimate for the right-hand side due to mutual
interaction of neighboring cracks: if they differ in length as
seen in Fig. 8(b), the shorter ones are partly unloaded by the
longer ones. As a reasonable estimate the shorter ones are
essentially unloaded if the length difference is equal to their
mutual distance or spacing 2p. This means

9G, ~_ G (C2)
da, P

Now we consider the left-hand side in Eq. (C1). Far ahead of
the crack tips the temperature is homogeneous and high, and
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far behind it is homogeneous and low. The inhomogeneous
temperature field near the crack tips gives rise to thermal
stresses and a corresponding energy release rate.

In the case of ideal heat transfer at the crack faces, the
transition length of the temperature field is given by the ther-
mal diffusion length D/v. The same transition length applies
to the thermal stress field which would be there if the tem-
perature field were there but not the cracks. The stress field
determines the energy release rate. This implies

(C3)

In the case of poor (effective) heat transfer, which implies a
jump of temperature at the interface, the transition length of
the temperature field is governed by the ratio of thermal con-
ductivity and heat transfer coefficient. If this transition length
is much larger than the crack spacing, most of the tempera-
ture difference is realized far behind the crack tips where it
does not give rise to thermal stresses in the separate strips.
So it appears that in this case, only a small fraction of the
total temperature difference contributes to thermal stresses.
Hence, thermal stresses and energy release rate G, in Eq.
(C3) are correspondingly smaller with poor heat transfer but
the extension of the thermal stress field is about the same,
namely, D/v, which implies, with Egs. (C3) and (C1) and
G1=G,, that the numerical result

vp/D = const (C4)

in Fig. 6(a) is reproduced.

The power of 2/3 in Fig. 6(b) is derived from scaling
arguments in [31]. Likewise, the result in Fig. 7, p~1, for
vly/D>1 in the presence of the temperature field [Eq. (12)],
is derived in [19]. As can be seen in lower left portion of Fig.
7, the scaling behavior of the results obtained by taking into
account the latent heat differs from Eq. (C4), which will be
discussed in [36].

APPENDIX D: CURVED CRACK FACES
AFTER BIFURCATION

Obviously, any rearrangement of the columns after bifur-
cation implies crack propagation with curved paths until an-
other stationary regime is reached, as indicated by the arrows
in Fig. 4(b). Such phenomenon has been tacitly assumed as a
precondition of the approach taken in this paper. It can be
shown that the required curvature follows from both plau-
sible arguments and calculation of dKj;.

According to the peculiarity of da(s) as seen in Fig. 5
(inset), the triple crack face at points 1 becomes a crack face
with a kink. Generally, kinks in a crack face tend to become
smoothed. (There is also experimental evidence for this, as
seen in the tomogram of Fig. 4(a) and in the movies in [13],
for example.)

The quantitative approach to the transient stage of curved
crack propagation is based on the bifurcation mode incre-
ment da(s) in Fig. 5(b) with its mode II stress intensity factor
dKy(s) as indicated in Fig. 9(a). It can be calculated, simi-
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(a) 4

hp/A=0.866
. vp/D=1.08
NS g v=0.21
50
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S
-4
0

FIG. 9. (a) Incremental mode II stress intensity factor dKp(s)
related to the crack contour increment da(s) at the instant of bifur-
cation (Fig. 5). (b) Schematic representation of three columns merg-
ing into one, with the initial curvature of the faces from Eq. (D2)
due to the presence of dKy(s) in (a).

larly as in Eq. (7), from the in-plane displacement compo-
nent duy(s) ~ da(s) normal to the crack contour in ligament
direction [33] with respect to the crack tip at r=0:

2
dKH(S) = ﬁhj}é T[dun(s, r) - dMH(S,O)] .
(D1)

In Fig. 9(a), dKy(s) vanishes for 0=s/p=1 for reasons of
symmetry; see the face labeled D in Fig. 4(d). Figure 9(b)
implies a change of sign of dKy(s) at point 2 in Fig. 4(d).

dKy(s)>0 in the region 1 =<s/p=2 implies an infinitesi-
mal deflection of the crack face, which is equivalent to the
onset of a finite curvature, as indicated in Fig. 9(b) and quan-
tified by the radius of curvature, R,(s),

L 2dKls) _ 2 dKy(s)
Rn(s) - KI da”(S) KI da(s) .

(D2)

Here, the circle of curvature with radius R,(s) lies in the
plane normal to the crack contour of the basic solution. The
above equation represents an approximate 3D extension of
Eq. (104) of [39] which was the basis for simulation of 2D
curved crack paths in [40]. Here da,(s) means an increment
which is in the crack plane (Fig. 2) and normal to the crack
contour. Because of the small slope of the basic solution [see
Fig. 3(b)] da,(s) is nearly equal to da(s) in Fig. 5(b), which
is in z direction.

Equation (D2) provides an approach to the understanding
of the observed phenomenon of three columns merging into
a larger one as illustrated in Figs. 9(b) and 4(b). Also it has
been shown herewith that our assumption of the bifurcation
mode being confined to the direction of the basic solution
does not pose a restriction.
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